Product information

Information about other products is available at: www.demeditec.com

Almond ELISA

DEALME01

96

Demeditec Diagnostics GmbH Lise-Meitner-Strasse 2 24145 Kiel – Germany www.demeditec.com

Demeditec Almond ELISA DEALME01

CONTENTS / INHALTSVERZEICHNIS

1.	GENERAL INFORMATION	3
2.	PRINCIPLE OF THE TEST	3
3.	PRECAUTIONS	3
4.	HEALTH AND SAFETY INSTRUCTIONS	3
5.	REAGENTS	4
6.	ADDITIONAL INSTRUMENTATION AND REAGENTS (NOT PROVIDED)	4
7.	SAMPLE PREPARATION	4
8.	PROCEDURE	6
9.	CALCULATION OF RESULTS	6
10.	TYPICAL STANDARD VALUES	7
11.	PERFORMANCE	7
1.	ALLGEMEINES	9
2.	TESTPRINZIP	9
3.	VORSICHTSMAßNAHMEN	9
4.	GESUNDHEITS- UND SICHERHEITSVORSCHRIFTEN	
5.	REAGENZIEN	10
6.	ZUSÄTZLICH BENÖTIGTE GERÄTE UND REAGENZIEN	
7.	PROBENVORBEREITUNG	11
8.	TESTDURCHFÜHRUNG	. 12
9.	BERECHNUNG DER ERGEBNISSE	12
10.	TYPISCHE STANDARDKURVE	13
11.	TECHNISCHE DATEN	13
SYN	MBOLS USED WITH DEMEDITEC ASSAYS	16

Sensitivity (Almond) 0.00-0.09 ppm Recovery 75 - 115 % Incubation Time 60 min

1. GENERAL INFORMATION

Almond (Prunus dulcis) belongs to the rosaceae. With 21 % the fraction of proteins in almond is high. Some of these proteins are known for being allergenic. In addition to profilin which is known to be cross-reactive to grass pollen, the almond major protein AMP has the greatest relevancy. AMP is known to be heat resistant making it stable to different production processes. For this reason almond represents an important food allergen. For almond allergic persons hidden almond allergens in food are a critical problem. Already very low amounts of almond can cause allergic reactions, which may lead to anaphylactic shock in severe cases. Because of this, almond allergic persons must strictly avoid the consumption of almonds or almond containing food. Cross-contamination, mostly in consequence of the production process is often noticed. The chocolate production process is a representative example. This explains why in many cases the existence of almond residues in foods cannot be excluded. For this reason, sensitive detection systems for almond residues in foodstuffs are required.

The Demeditec **Almond ELISA** represents a highly sensitive detection system and is particularly capable of the quantification of almond residues in cookies, cereals, ice cream, sweets, food supplements and chocolate. Furthermore, it is validated for rinse water / CIP s and swab samples.

2. PRINCIPLE OF THE TEST

The Demeditec **Almond** quantitative test is based on the principle of the enzyme linked immunosorbent assay. An antibody directed against almond proteins is bound on the surface of a microtiter plate. Almond containing samples or standards are given into the wells of the microtiter plate. After 20 minutes incubation at room temperature, the wells are washed with diluted washing solution to remove unbound material. A peroxidase conjugated second antibody directed against almond proteins is given into the wells and after 20 minutes of incubation the plate is washed again. A substrate solution is added and incubated for 20 minutes, resulting in the development of a blue colour. The colour development is inhibited by the addition of a stop solution, and the colour turns yellow. The yellow colour is measured photometrically at 450 nm. The concentration of almond is directly proportional to the colour intensity of the test sample.

3. PRECAUTIONS

Full compliance of the following good laboratory practices (GLP) will determine the reliability of the results:

- 1. Prior to beginning the assay procedure, bring all reagents to room temperature (20-25°C).
- 2. All reagents should be mixed by gentle inversion or swirling prior to use. Do not induce foaming.
- 3. Once the assay has been started, all subsequent steps should be completed without interruption and within the recommended time limits.
- 4. Replace caps in all the reagents immediately after use. Do not interchange vial stoppers.
- 5. Use a separate disposable tip for each specimen to prevent cross-contamination.
- 6. All specimens and standards should be run at the same time, so that all conditions of testing are the same.
- 7. Do not mix components from different batches.
- 8. Do not use reagents after expiration date.
- 9. Check both precision and accuracy of the laboratory equipment used during the procedure (micropipets, ELISA reader etc.).

4. HEALTH AND SAFETY INSTRUCTIONS

- 1. Do not smoke or eat or drink or pipet by mouth in the laboratory.
- 2. Wear disposable gloves whenever handling patient specimens.
- 3. Avoid contact of substrate and stop solution with skin and mucosa (possible irritation, burn or toxicity hazard). In case of contact, rinse the affected zone with plenty of water.
- 4. Handling and disposal of chemical products must be done according to good laboratory practices (GLP).

5. REAGENTS

The kit contains reagents for 96 determinations. They have to be stored at 2-8°C. Expiry data are found on the labels of the bottles and the outer package.

- 1. **SORB** MT Microtiter plate consisting of 12 strips with 8 breakable wells each, coated with anti-almond antibodies.
- 2. CAL 1 5 Almond Standards (0; 0.4; 1; 4; 10 ppm of almond): 5 vials with 2.0 mL each, dyed red, ready-to-use
- 3. **ENZ CONJ Conjugate** (anti-almond-peroxidase): 15 mL, dyed red, ready-to-use.
- 4. SUB TMB Substrate Solution (TMB): 15 mL, ready-to-use.
- 5. **STOP SOLN Stop Solution** (0.5 M H₂SO₄): 15 mL, ready-to-use.
- 6. SAM DIL 10x Extraction and sample dilution buffer (Tris): 2 x 120 mL as 10x concentrate, dyed red. Dilute 1+9 with distilled water. Stored at 4°C the diluted buffer is stable for at least one week. If during the cold storage crystals precipitate, the concentrate should be warmed up to 37°C for 15 minutes.
- 7. WASH SOLN 10x Washing Solution (PBS + Tween 20): 60 mL as 10x concentrate. Dilute 1+9 with distilled water. Stored at 4°C the diluted buffer is stable for at least 4 weeks. If during the cold storage crystals precipitate, the concentrate should be warmed up to 37°C for 15 minutes.
- 8. Instruction Manual.

6. ADDITIONAL INSTRUMENTATION AND REAGENTS (NOT PROVIDED)

Instrumentation

- 100 1000 μL micropipets
- Volumetric flask
- Analytical balance
- Mortar, mixer
- Water bath
- Centrifuge
- ELISA reader (450 nm)
- Plastic bag to store unused microtiter strips

Reagents

- double distilled water
- Polyvinylpyrrolidone (PVP), optional

7. SAMPLE PREPARATION

Due to high risk of cross-contamination all applied instruments like applicator, mortar, glass vials etc. have to be **cleaned thoroughly** before and after each sample. Almond proteins adhere very strongly to different surfaces. In certain cases they can resist a common dishwasher cleaning. To identify possible cross-contamination caused by previous extractions it is strongly recommended to note the sequence of the extractions.

The following sample preparation should be applied for solid samples:

- 1. To maximize homogeneity and representativeness of the sample drawing, a minimum of 5 g sample should be pulverized finely in a mortar, impact mill etc.
- 2. 1 g of the homogenized mixture is suspended in 20 mL of **pre-diluted** extraction and sample dilution buffer. Afterwards the suspension is incubated for 15 min in a preheated water bath at 60°C. To ensure good homogeneity, the samples should be shaken every two minutes.
- 3. The samples are centrifuged for 10 minutes at ≥2000 g. If it is not possible to separate the supernatant from the precipitate completely, the suspension should be filtrated if necessary.
- 4. 100 μL of particle-free solution are applied per well. If the results of a sample are out of the measuring range, further dilution with the **pre-diluted** extraction and sample dilution buffer is necessary. The additional dilution has to be considered when calculating the concentration.

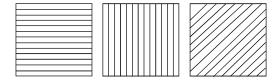
The following sample preparation should be applied for liquid samples:

1 mL of liquid sample is diluted in 19 mL of pre-diluted extraction and sample dilution buffer. Afterwards the suspension is incubated for 15 min in a pre-heated water bath at 60°C. To ensure good homogeneity, the samples should be shaken every two minutes. The process is continued at point 3 of solid sample extraction process.

The following variation should be applied for polyphenol containing food samples like chocolate:

Dilute 1 g of Polyvinylpyrrolidone (PVP) in 100 mL of pre-diluted extraction buffer. Apply the buffer as extraction buffer in the sample preparations stated above

Attention:


- Do not shake the final extract to prevent from re-suspension.
- If after centrifugation a third layer at the top appears due to a high fatty matrix, only the middle aqueous phase should be applied to the wells.

The following sample preparation should be applied for rinse water samples:

- 1. Adjust the pH of the sample to 8.2 (+/- 0.5)
- 2. 1 mL of liquid sample is diluted in 4 mL of pre-diluted extraction and sample dilution buffer. The process is continued at point 4 of solid food sample extraction process.

The following sample preparation should be applied for swab samples on dry surfaces:

- 1. Mark out 5x5 cm area or use swab directly on (e.g. uneven) area.
- 2. Moisten the swab in 1 mL pre-diluted extraction and sample dilution buffer previously applied in a test tube.
- 3. Swab marked area by using crosshatch (1. horizontally, 2. vertically, 3. diagonally) technique while rotating the tip.

- Place swab into the test tube.
- 5. Shake the test tube for 1 minute to release the sample from the swab. The process is contined at point 4 of solid food sample extraction process.

For wet surfaces exactly the same procedure is applied without prior need to moisten the swab.

8. PROCEDURE

The washing solution is supplied as 10x concentrate and has to be **diluted** 1+9 with double distilled water before use.

In any case the **ready-to-use** standards provided should be determined twofold. When samples in great quantities are determined, the standards should be pipetted once before the samples and once after the samples. For final interpretation the arithmetic mean is used for calculation.

In consideration of GLP and quality control requirements a duplicate measurement of samples is recommended.

The procedure is according to the following scheme:

- 1. Prepare samples as described above.
- 2. Pipet 100 µL **ready-to-use** standards or prepared samples in duplicate into the appropriate wells of the microtiter plate.
- 3. Incubate for 20 minutes at room temperature.
- 4. Wash the plate three times as follows: Discard the contents of the wells (dump or aspirate). Pipet 300 μL of diluted washing solution into each well. After the third repetition empty the wells again and remove residual liquid by striking the plate against a paper towel. The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbencies.
- 5. Pipet 100 µL of conjugate (anti-almond-peroxidase) into each well.
- 6. Incubate for 20 minutes at room temperature.
- 7. Wash the plate as outlined in 4.
- 8. Pipet 100 µL of substrate solution into each well.
- 9. Allow the reaction to develop in the dark (e.g. cupboard or drawer; the chromogen is light-sensitive) for 20 minutes at room temperature.
- 10. Stop enzyme reaction by adding 100 μ L of stop solution (0.5 M H₂SO₄) into each well. The blue colour will turn yellow upon addition.
- 11.After thorough mixing, measure absorbance at 450 nm (reference wavelength 620 nm), using an ELISA reader. The colour is stable for 30 minutes.

9. CALCULATION OF RESULTS

The following evaluation procedure should be applied for all **food samples** prepared by the procedure as stated *Sample Preparation*:

The ready-to-use standards are prepared for a direct determination of food sample concentrations. The dilution (1:20) of samples in the extraction process as described in the above stated sample preparation procedure is already considered. Additional dilution due to high sample concentration has to be accounted for.

- 1. Calculate the average optical density (OD 450 nm) for each set of reference standards or samples.
- 2. Construct a standard curve by plotting the mean optical density obtained for each reference standard against its concentration in ppm on semi-log graph paper with the optical density on the vertical (y) axis and the concentration on the horizontal (x) axis. Alternatively the evaluation can be carried out by software. In this case the 4-parameter method should be preferred.
- 3. Using the mean optical density value for each sample, determine the corresponding concentration of almond in ppm from the standard curve. Depending on experience and/or the availability of computer capability, other methods of data reduction may be employed.

The following evaluation procedure should be applied for rinse water samples prepared according the procedure stated Sample Preparation:

- 1. Apply the evaluation procedure food samples as stated above.
- 2. Divide the result by 4 in order to compensate the different dilution factor of the extraction procedure to receive the sample concentration in mg/L.

The following evaluation procedure should be applied for swab samples prepared according the procedure stated in Sample Preparation:

- 1. Apply the evaluation procedure food samples as stated above.
- 2. Multiply the result (ppm) by 2 in order to compensate the different dilution factor of the extraction procedure to receive the sample concentration in ng/cm².

10. TYPICAL STANDARD VALUES

The following table contains an example for a typical standard curve. The binding is calculated as percent of the absorption of the 10 ppm standard. These values are only an example and should not be used instead of the standard curve which has to be measured in every new test.

Almond (ppm)	% binding of 10 ppm
10	100
4	54
1	21
0.4	13
0	6

11. PERFORMANCE

Sensitivity

The limit of detection (LOD) of the Demeditec **Almond test** is 0.06 ppm almond.

Validation experiments with common matrices resulted in the following mean LODs [ppm].

Cookies	0.05
Ice-cream	0.04
Sweets	0.04
Chocolate	0.09
Food Supplement	0.00
Cereals	0.01

The limit of quantification (LOQ) of the Demeditec Almond test is 0.4 ppm almond.

As matrices can have variable influence on the LOD in specific cases, and the range of matrices that was tested is of course limited, the end user if needed may evaluate its own LOD values depending on the matrices to be analyzed.

Alternatively, any results below LOQ should be just reported quantitatively as "< LOQ".

Precision

Intra-Assay Precision	6.5%
Inter-Assay Precision	7.3%
Inter-Extraction Precision	7.2%

Linearity

The serial dilution of spiked samples (cookies, cereals, ice cream, chocolate, sweets and food supplement) resulted in a mean dilution linearity of 93-100%.

Cross-reactivity

For the following foods no cross-reactivity could be detected:

Adzuki bean	Chestnut	Garlic, granul.	Onion	Sesame
Apricot	Chicken	Ginger, fresh	Paprika	Shrimps
Barley	Chickpea	Gliadin	Pea	Soy flour
Bean, white	Chili	Goat's milk	Peanut	Soy lecithin
Beef	Coconut	Guar gum	Peach	Split pea
Bovine gelatin	Cod	Gum arabic	Pecan	Sunflower seed
Brazil nut	Corn	Hazelnut	Pepper, black	Thyme
Buckwheat	Cow' milk	Kidney bean	Pine seed	Tofu
Cabbage. white	Cumin	Kiwi	Pistachio	Tomato
Caraway	Dill	Lamb	Pork	Turkey
Cardamom	Duck	Leek	Potato	Turmeric
Carob gum	Egg, dried	Lentil	Prawn	Walnut
Carrot	Fennel	Lupin	Pumpkin seed	Wheat
Cashew	Fenugreek	Mustard, yellow	Rapeseed	
Cayenne	Flaxseed	Mustard, black	Rice	
Celery	Garden cress	Nutmeg	Rye	
Cherry	Garlic, fresh	Oats	Saccharose	

For the following commodities of the table above the results were between 0.5*LOQ and LOQ of the kit. So it cannot be completely excluded that these matrices may provide values above the LOQ in specific cases:

Chili	Ginger, fresh	Lentil
Cumin	Kidney bean	Thyme
Hazelnut	Cherry	

The following cross reactions were determined:

Apricot kernel	100%
Caraway	0.00004%
Cherry kernel	1.7%
Chia	0.0002%
Cinamon	0.00006%
Clove	0.0002%
Cocoa	0.0001%
Ginger, ground	0.00007%
Horseradish	0.00007%
Macadamia	0.00007%
Mahaleb cherry kernel	1.4%
Peach kernel	16%
Plum kernel	1%
Poppy seed	0.0001%
Radish	0.00008%
Sweet red pepper seed	0.00004%

Recovery

Mean recovery was determined by spiking samples with different amounts of almond:

Cookies	103%
Cereals	115%
Ice cream	75%
Chocolate	91%
Sweets	97%
Food Supplement	90%

Empfindlichkeit 0,00-0,09 ppm Wiederfindung 75 – 15 % Inkubationszeit 60 min

1. ALLGEMEINES

Die Mandel (Prunus dulcis) gehört zu den Rosengewächsen und hat mit ca. 21 % einen hohen Proteinanteil im Kern. Einige dieser Proteine sind als allergieauslösend bekannt. Neben dem mit Gräsern kreuzreagierenden Profilin hat dabei das Hauptspeicherprotein AMP große Bedeutung. Dieses verliert auch nach Hitzeeinwirkung nicht sein allergisches Potential und ist damit stabil gegenüber verschiedenen Produktionsprozessen. Aus diesem Grund stellt die Mandel ein bedeutsames Nahrungsmittelallergen dar. Für Allergiker sind versteckte Mandelallergene in Nahrungsmitteln ein kritisches Problem. Schon sehr geringe Mengen von Mandel lösen allergische Reaktionen bis hin zum anaphylaktischen Schock aus. Aus diesem Grund müssen Mandelallergiker auf den Konsum von Mandeln oder mandelhaltigen Nahrungsmitteln strikt verzichten. Aufgrund von Kreuzkontaminationen, meist bedingt durch den Produktionsprozess von Nahrungsmitteln wie z.B. bei Schokolade, kann bei einigen Lebensmitteln das Vorhandensein von Mandelrückständen nicht ausgeschlossen werden. Um diese detektieren zu können, bedarf es sensitiver Nachweissysteme.

Der Demeditec **Mandel ELISA** stellt ein hochsensibles Nachweissystem dar und ist insbesondere zur Quantifizierung von Mandelrückständen in Keksen, Eiscreme, Süßigkeiten, Schokolade, Nahrungsergänzungsmitteln und Cerealien geeignet. Darüber hinaus ist der Test für CIP-Spülwasser und Abstrichproben validiert.

2. TESTPRINZIP

Der Demeditec **Mandel Test** basiert auf dem Prinzip des Enzymimmunoassay (EIA). Ein gegen Mandelprotein gerichteter Antikörper ist auf der Oberfläche der Mikrotiterplatte gebunden. Darauf wird die Mandel enthaltende Probe bzw. Standards in die Vertiefungen der Mikrotiterplatte gegeben. Es findet eine Bindung zwischen Antikörper und Mandelprotein statt. Nach 20-minütiger Inkubation bei Raumtemperatur wird die Platte mit verdünntem Waschpuffer gewaschen, um nichtgebundenes Material zu entfernen. Ein Peroxidase-markierter, gegen Mandelprotein gerichteter zweiter Antikörper wird in die Vertiefungen pipettiert. Nach einer weiteren 20-minütigen Inkubation wird erneut gewaschen. Eine Substratlösung wird hinzupipettiert und 20 Minuten inkubiert, wodurch in den Vertiefungen ein blauer Farbstoff entwickelt wird. Die Farbentwicklung wird durch Zugabe einer Stopp-Lösung beendet, wobei ein Farbumschlag von blau nach gelb stattfindet. Die resultierende Farbe wird spektrophotometrisch bei 450 nm gemessen. Die Mandelkonzentration ist der Intensität der Färbung direkt proportional.

3. VORSICHTSMAßNAHMEN

Die volle Übereinstimmung mit den folgenden Regeln für eine gute Laborpraxis (GLP) wird zu vertrauenswürdigen Ergebnissen führen:

- 1. Vor der Testdurchführung müssen alle Reagenzien auf Raumtemperatur gebracht werden (20°C-25°C).
- 2. Älle Reagenzien sollten vor der Verwendung durch leichtes Kippen oder Schwenken gemischt werden. Die Erzeugung von Schaum sollte dabei vermieden werden.
- 3. Wenn mit der Testdurchführung einmal begonnen ist, sollten alle nachfolgenden Schritte ohne Unterbrechung und innerhalb der empfohlenen Zeitgrenzen vollzogen werden.
- 4. Unmittelbar nach Entnahme der Reagenzien sollten die Flaschen wieder mit ihren Stopfen verschlossen werden. Die Verschlüsse dürfen nicht verwechselt werden!
- 5. Für jede Probe muss eine separate Einmal-Pipettenspitze verwendet werden, um eine Verschleppung bzw. Kreuzkontamination zu vermeiden.
- 6. Alle Proben und Standards sollten gleichzeitig getestet werden, so dass die Bedingungen für alle identisch sind.
- 7. Komponenten von verschiedenen Chargen dürfen nicht verwendet oder gemischt werden.
- 8. Reagenzien dürfen nach der Verfallszeit nicht benutzt werden.
- 9. Es sollten ständig die Präzision und die Richtigkeit für die Laborgeräte kontrolliert werden, die man für das Testverfahren benutzt (Mikropipetten, Washer, ELISA-Reader, etc.).

4. GESUNDHEITS- UND SICHERHEITSVORSCHRIFTEN

- 1. Im Laboratorium darf nicht geraucht, gegessen und getrunken werden. Das Pipettieren mit dem Mund ist nicht zulässig.
- 2. Beim Einsatz von Proben menschlichen Ursprungs müssen Einmalhandschuhe getragen werden.
- 3. Der Kontakt der Stopp-Lösung mit Haut und Schleimhäuten sollte vermieden werden, da mögliche Reizungen, Verbrennungen oder Vergiftungsgefahr auftreten können. Sollte ein Kontakt entstehen, muss der betroffene Bereich mit ausreichend Wasser abgespült werden.
- 4. Die Handhabung und die Beseitigung von chemischen Produkten muss nach den Richtlinien für eine gute Laborpraxis (GLP) erfolgen.

5. REAGENZIEN

Der Kit enthält Reagenzien für 96 Bestimmungen. Sie müssen bei 2-8°C gelagert werden. Das Verfallsdatum ist auf jeder Komponente sowie auf der Verpackung angegeben.

- SORB MT Mikrotiterplatte mit 96 Kavitäten (12 Streifen mit je 8 Vertiefungen, einzeln abbrechbar), beschichtet mit mandelbindenden Antikörpern.
- 2. **CAL 1 5** Mandel **Standards**: 5 Fläschchen mit je 2,0 mL (0, 0.4, 1, 4, 10 ppm Mandel), rot eingefärbt, gebrauchsfertig.
- 3. **ENZ CONJ Konjugat** (anti-Mandel-Peroxidase), 15 mL, rot eingefärbt, gebrauchsfertig.
- 4. SUB TMB Substratiosung (TMB), 15 mL, gebrauchsfertig.
- 5. **STOP SOLN Stopp-Lösung** (0,5 M H₂SO₄), 15 mL, gebrauchsfertig.
- 6. SAM DIL 10x Extraktions- und Verdünnungspuffer (TRIS), 2 x 120 mL als 10x-Konzentrat, rot eingefärbt. Gebrauchslösung: 1+9 mit dest. Wasser verdünnen. Der verdünnte Puffer ist bei 4°C mindestens eine Woche haltbar. Falls bei der gekühlten Lagerung Kristalle ausfallen sollten, das Konzentrat 15 Minuten im Wasserbad (37°C) erwärmen.
- 7. WASH SOLN 10x Waschlösung (PBS + Tween 20), 60 mL als 10x-Konzentrat. Gebrauchslösung: 1+9 mit dest. Wasser verdünnen. Der verdünnte Puffer ist bei 4°C mindestens 4 Wochen haltbar. Falls bei der gekühlten Lagerung Kristalle ausfallen sollten, das Konzentrat 15 Minuten im Wasserbad (37°C) erwärmen.
- 8. Arbeitsanleitung.

6. ZUSÄTZLICH BENÖTIGTE GERÄTE UND REAGENZIEN

Geräte

- 100 1000 µL Mikropipetten
- Messkolben
- Analysenwaage
- Mörser, Mixer
- Wasserbad
- Zentrifuge
- Mikrotiterplatten-Photometer (450 nm)
- Ein wiederverschließbarer Plastikbeutel für die Lagerung unbenutzter Streifen

Reagenzien

- bidestilliertes Wasser
- Polyvinylpyrrolidon (PVP), optional

7. PROBENVORBEREITUNG

Aufgrund der hohen Gefahr von Kreuzkontaminationen müssen alle verwendeten Arbeitsgeräte wie Spatel, Mörser, Glasgefäße etc. vor und nach jeder Probe **gründlich gereinigt** werden. Mandelproteine haften sehr stark an den Oberflächen und können in manchen Fällen selbst einer herkömmlichen Spülmaschinenreinigung standhalten. Es wird empfohlen, die Reihenfolge der Extraktionen festzuhalten, um eventuelle Kreuzkontaminationen durch Vorextrakte besser identifizieren zu können.

Folgende Probenvorbereitung sollte für alle Arten von festen Proben angewandt werden:

- 1. Um eine möglichst homogene und repräsentative Probennahme zu gewährleisten, sollten mindestens 5 g Probe in einem Mörser, einer Schlagmühle etc. fein zermahlen und gut durchgemischt werden.
- 2. Von dieser Mischung wird 1 g entnommen und in 20 mL **verdünntem** Extraktionspuffer suspendiert. Anschließend wird die Suspension 15 min in einem vorgeheizten Wasserbad bei 60°C inkubiert. Die Proben sollten währenddessen alle zwei Minuten geschüttelt werden, um eine gute Durchmischung zu gewährleisten.
- 3. Die Proben werden bei mindestens 2000 g für 10 min zentrifugiert. Sollte sich der Überstand anschließend nicht partikelfrei abtrennen lassen, kann gegebenenfalls noch einmal filtriert werden.
- 4. Für den Test werden pro Kavität 100 μL partikelfreie Lösung eingesetzt. Sollte das Ergebnis des Tests oberhalb des Messbereichs liegen, kann die Lösung gegebenenfalls mit **verdünntem** Extraktionspuffer weiter verdünnt und erneut bestimmt werden.

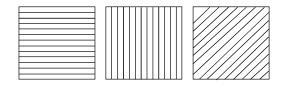
Folgende Probenvorbereitung sollte für flüssige Nahrungsmittelproben angewandt werden:

1 mL flüssige Probe wird in 19 mL verdünntem Extraktionspuffer verdünnt. Anschließend wird die Suspension für 15 Minuten in einem vorgeheizten Wasserbad bei 60°C inkubiert. Die Proben sollten währenddessen alle zwei Minuten geschüttelt werden, um eine gute Durchmischung zu gewährleisten. Anschließend wird mit Punkt 3 der Probenvorbereitung für feste Nahrungsmittelproben fortgefahren.

Folgende Abweichung sollte für polyphenolhaltige Proben wie Schokolade oder Gewürze angewandt werden:

1 g Polyinylpyrrolidon (PVP) werden in 100 mL verdünntem Extraktionspuffer gelöst. Dieser Puffer wird als Extraktionspuffer wie oben beschrieben verwendet.

Achtung:


- Um Re-Suspension zu vermeiden, sollte der Extrakt nach dem Zentrifugieren nicht geschüttelt werden.
- Falls, bedingt durch einen hohen Fett-Anteil der Matrix, nach dem Zentrifugieren, eine dritte, obere Phase entsteht, sollte nur die mittlere wässrige Phase für den Test verwendet werden.

Folgende Probenvorbereitung sollte für CIP-Spül-wasser angewandt werden:

- 1. Der pH-Wert wird auf pH 8,2 (+/- 0,5) eingestellt.
- 2. 1 mL der Probe werden mit 4 mL verdünntem Extraktionspuffer verdünnt. Anschließend wird mit Punkt 4 der Probenvorbereitung für feste Nahrungsmittelproben fortgefahren.

Folgende Probenvorbereitung sollte für Abstrichproben angewandt werden:

- 1. Es wird ein Bereich von 5x5 cm markiert oder eine adäquate Fläche (bei unebenen Bereichen) abgestrichen
- 2. 1 mL verdünnter Extraktionspuffer wird in ein Teströhrchen pipettiert und anschließend der Abstrich-Tupfer durch Eintauchen befeuchtet.
- 3. Die Fläche wird kreuzweise (1. horizontal, 2. vertikal, 3. diagonal) abgestrichen. Dabei wird der Abstrich-Tupfer gedreht.

- 4. Der Abstrich-Tupfer wird wieder in das Teströhrchen gesteckt.
- 5. Das Test-Röhrchen wird 1 min geschüttelt, um die Probe aus dem Abstrich-Tupfer zu lösen. Anschließend wird mit Punkt 4 der Probenvorbereitung für feste Nahrungsmittelproben fortgefahren.

8. TESTDURCHFÜHRUNG

Der Waschpuffer liegt als 10faches Konzentrat vor und muss vor dem Gebrauch 1+9 mit bidestilliertem Wasser **verdünnt** werden.

Die **gebrauchsfertigen** Standards sollten in jedem Fall im Doppelansatz bestimmt werden. Bei größeren Mengen von Proben sollten die Standards einmal vor und einmal nach den Proben pipettiert und der Mittelwert zur Auswertung herangezogen werden.

Unter Berücksichtigung von GLP und Qualitätsmanagement ist eine Bestimmung der Proben im Doppelansatz zu empfehlen.

Die Testdurchführung verläuft nach dem folgenden Schema:

- 1. Proben nach Vorschrift vorbereiten.
- 2. 100 μL **gebrauchsfertige** Standards bzw. vorbehandelte Proben im Doppelansatz in die Vertiefungen der Mikrotiterplatte geben.
- 3. Platte 20 Minuten bei Raumtemperatur inkubieren.
- 4. Platte wie folgt dreimal waschen: Vertiefungen der Platte entleeren (auskippen oder absaugen) und 300 μL endverdünnte Waschlösung dazugeben. Nach der dritten Wiederholung Vertiefungen erneut leeren und Flüssigkeitsreste durch Ausschlagen der Mikrotiterplatte auf einem Papiertuch entfernen. Der Waschvorgang ist ein kritischer Schritt. Ungenügendes Waschen führt zu einer geringen Präzision und fälschlicherweise erhöhten Extinktionen.
- 5. 100 µL Konjugat (anti-Mandel-Peroxidase) in die Vertiefungen pipettieren.
- 6. Platte 20 Minuten bei Raumtemperatur inkubieren.
- 7. Vertiefungen wie in Punkt 4 beschrieben waschen.
- 8. 100 µL Substratlösung zugeben.
- 9. Platte abdecken und 20 Minuten bei Raumtemperatur im Dunkeln inkubieren.
- 10. Substratreaktion durch Zugabe von 100 µL Stopp-Lösung (0,5 M H₂SO₄) beenden.
- 11. Nach sorgfältigem Mischen erfolgt die Messung der Extinktion bei 450 nm (eventuell Referenzwellenlänge 620 nm). Die Farbe ist maximal 30 Minuten stabil.

9. BERECHNUNG DER ERGEBNISSE

Die folgende Prozedur sollte zur Auswertung von allen Nahrungsmittelproben, die, wie in der Probenvorbereitung beschrieben, hergestellt wurden, angewandt werden:

Die gebrauchsfertigen Standards sind für eine direkte Bestimmung von Nahrungsmittelproben vorbereitet. Die Verdünnung (1:20) der Proben, wie oben im Extraktionsprozess beschrieben, ist bereits berücksichtigt. Zusätzliche Probenverdünnung aufgrund zu hoher Probenkonzentration muss berücksichtigt werden.

- 1. Für jede Probe bzw. jeden Standard wird die gemittelte Extinktion (OD 450) berechnet.
- 2. Aus den gemittelten Werten der Standardreihe wird graphisch auf halblogarithmischem Millimeterpapier oder über ein EDV-Programm (4-Parameter-Auswertung) eine Eichkurve erstellt. Die Extinktion jedes Standards (y-Achse) wird gegen die Konzentration in ppm (x-Achse) aufgetragen.
- 3. Mit Hilfe dieser Kurve wird für die gemittelten Extinktionen der Proben der Wert in ppm für Mandel abgelesen. Die ermittelten Konzentrationen beziehen sich direkt auf den Mandelgehalt der eingewogenen Probe. Sollte der Extrakt aufgrund eines zu hohen Mandelgehalts zusätzlich verdünnt worden sein, muss dies bei der Auswertung berücksichtigt werden.

Die folgende Prozedur sollte zur Auswertung von CIP-Spülwasser-Proben, die, wie in der Probenvorbereitung beschrieben, hergestellt wurden, angewandt werden:

- 1. Es wird die Auswerteprozedur für Nahrungsmittelproben angewandt.
- 2. Das Ergebnis wird anschließend durch 4 geteilt, um die unterschiedlichen Probenverdünnungsfaktoren zu kompensieren und das Ergebnis in mg/L zu erhalten.

Die folgende Prozedur sollte zur Auswertung von Abstrich-Proben, die, wie in der Probenvorbereitung beschrieben, hergestellt wurden, angewandt werden:

- 1. Es wird die Auswerteprozedur für Nahrungsmittel-proben angewandt.
- 2. Das Ergebnis (ppm) wird anschließend mit 2 multipliziert, um den unterschiedlichen Probenverdünnungsfaktor zu kompensieren und das Ergebnis in ng/cm² zu erhalten.

10. TYPISCHE STANDARDKURVE

Die folgende Tabelle enthält ein Beispiel für eine Standardreihe. Die Werte dieser Standardkurve sind nur als Beispiel bestimmt und dürfen nicht an Stelle der in jedem Test neu zu erstellenden Kurve verwendet werden.

Mandel (ppm)	OD- % von 10 ppm
10	100
4	54
1	21
0.4	13
0	6

11. TECHNISCHE DATEN

Empfindlichkeit

Die mittlere untere Nachweisgrenze (LOD) des Demeditec **Mandel Tests** beträgt 0,6 ppm bezogen auf die Standardkurve.

Validierungsexperimente mit gebräuchlichen Matrizes resultierten in folgenden unteren Nachweisgrenzen [ppm].

Kekse	0,05
Eiscreme	0,04
Süßigkeiten	0,04
Schokolade	0,09
Nahrungsergänzungsmittel	0,00
Cerealien	0,01

Die untere Bestimmungsgrenze (LOQ) des Demeditec Mandel Tests beträgt 0,4 ppm.

Da jede Matrix einen unterschiedlichen Einfluss auf die LOD haben kann und die Bandbreite der getesteten Matrices begrenzt ist, sollte im Bedarfsfall für jede zu untersuchende Matrix eine spezifische LOD ermittelt werden.

Alternativ können alle Ergebnisse unterhalb der LOQ als quantitativ "< LOQ" angegeben werden.

Präzision

Intra-Assay Präzision	6,5%
Inter-Assay Präzision	7,3%
Inter-Extraktion Präzision	7,2%

Linearität

Die schrittweise Verdünnung dotierter Proben über fünf Stufen (Keks, Eiscreme, Süßigkeiten, Schokolade, Cerealien und Nahrungsergänzungsmittel) ergab Verdünnungslinearitäten von 93-100%.

Spezifität

Für die folgenden Nahrungsmittel wurde ein negatives Ergebnis und damit keine Kreuz-Reaktivität festgestellt:

Adzukibohne	Gartenkresse	Kiwi	Pfirsich	Soja-Lecithin
Aprikose	Gelatine (Rind)	Knoblauch, frisch	Pinienkern	Sojamehl
Bockshornklee	Gerste	Knoblauch, granuliert	Pistazie	Sonnenblumenkern
Bohne, weiß	Gliadin	Kokosnuss	Porree	Thymian
Buchweizen	Guarkernmehl	Kümmel	Pute	Tofu
Cashew	Gummi arabicum	Kürbiskern	Raps	Tomate
Cayenne	Hafer	Lamm	Reis,	Vollei (getrocknet)
Chili	Haselnuss	Leinsamen	Rindfleisch	Vollmilch
Cumin	Huhn	Linse	Roggen	Walnuss
Curcuma	Ingwer, frisch	Lupine	Saccharose	Weißkohl
Dill	Johannisbrotkernmehl	Maismehl	Schälerbse	Weizen
Dorsch	Kardamom	Marone	Schweinefleisch	Ziegenmilch
Ente	Karotte	Muskatnuss	Sellerie	Zwiebel
Erbse	Kartoffel	Paprika	Senf, gelb	
Erdnuss	Kichererbse	Paranuss	Senf, schwarz	
Fenchel	Kidneybohne	Pecannuss	Sesam	
Garnele	Kirsche	Pfeffer	Shrimps	

Für die folgenden Nahrungsmittel der obenstehenden Tabelle waren die Ergebnisse zwischen 0,5xLOQ und LOQ des Test Kits. Es kann nicht komplett ausgeschlossen werden, dass diese Matrizes in Einzelfällen zu Ergebnissen oberhalb der LOQ führen:

Chili	Ingwer, frisch	Kirsche	
Cumin	Kardamom	om Linse	
Haselnuss	Kidneybohne	Thymian	

Folgende Kreuzreaktionen wurden festgestellt:

Aprikosenkern	100%	
Chia	0,0002%	
Ingwer, gemahlen	0,00007%	
Kakao	0,0001%	
Kirschkern	1,7%	
Macadamia	0,00007%	
Meerrettich	0,00007%	
Mohn	0,0001%	
Nelke	0,0002%	
Pfirsichkern	16%	
Pflaumenkern	1%	
Rettich	0,00008%	
Rosa Pfeffer	0,00004%	
Steinweichselkern	1,4%	
Zimt	0,00006%	

Wiederfindung

Die folgenden mittleren Wiederfindungsraten wurden anhand aufgestockter Proben bestimmt:

Kekse	103%	
Süßigkeiten	97%	
Eiscreme	75%	
Schokolade	91%	
Nahrungsergänzungsmittel	90%	
Cerealien	115%	

SYMBOLS USED WITH DEMEDITEC ASSAYS

Symbol	English	Deutsch	Française	Espanol	Italiano
(€	European Conformity	CE-Konformitäts- kennzeichnung	Conforme aux normes européennes	Conformidad europea	Conformità europea
Ţ <u>i</u>	Consult instructions for use	Gebrauchsanweisung beachten	Consulter les instruc- tions d'utilisation	Consulte las Instrucciones	Consultare le istruzioni per l'uso
IVD	In vitro diagnostic de- vice	In-vitro-Diagnostikum	utilisation Diagnostic in vitro	Diagnóstico in vitro	Per uso Diagnostica in vitro
RUO	For research use only	Nur für Forschungs- zwecke	Seulement dans le cadre de recherches	Sólo para uso en investigación	Solo a scopo di ricerca
REF	Catalogue number	Katalog-Nr.	Référence	Número de catálogo	No. di catalogo
LOT	Lot. No. / Batch code	Chargen-Nr.	No. de lot	Número de lote	Lotto no
Σ	Contains sufficient for <n> tests/</n>	Ausreichend für "n" Ansätze	Contenu suffisant pour "n" tests	Contenido suficiente para <n> ensayos</n>	Contenuto sufficiente per "n" saggi
\triangle	Note warnings and pre- cautions	Warnhinweise und Vorsichtsmaßnahmen beachten	Avertissements et me- sures de précaution font attention	Tiene en cuenta advertencias y precauciones	Annoti avvisi e le pre- cauzioni
	Storage Temperature	Lagerungstemperatur	Température de con- servation	Temperatura de conservacion	Temperatura di conservazione
	Expiration Date	Mindesthaltbarkeits- datum	Date limite d'utilisation	Fecha de caducidad	Data di scadenza
***	Legal Manufacturer	Hersteller	Fabricant	Fabricante	Fabbricante
Distributed by	Distributed by	Vertrieb durch	Distribution par	Distribución por	Distribuzione da parte di
V <x></x>	Version	Version	Version	Versión	Versione
②	Single-use	Einmalverwendung	À usage unique	Uso único	Uso una volta